
ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 24.-26.05.2017. 

 

1225 

INVESTIGATION OF OSCILLATIONS OF HAMMER ROTOR OF GRAIN CRUSHER  

Vasiliy Sysuev
1
, Peter Savinyh

1
, Alexey Aleshkin

2
, Semjons Ivanovs

3
 

1
North-East Agricultural Research Institute, Russia; 

2
Vyatka State University, Russia; 

3
Latvia University of Agriculture, Latvia 

semjons@apollo.lv 

Abstract. Due to the high productivity and the wide range of crushing, rotor crushers are widely used for 

crushing grain for animals. The paper deals with the movement of the rotor with moving masses as an example 

of a hammer rotor of the crusher, which can be imagined as a system with several degrees of freedom with 

nonstationary constraints, taking into account the forces of resistance and nonharmonic periodic external 

influences. For the generation of differential equations of the movement of the system, we used the Lagrange 

equations of the second kind, in the solution of which decomposition of the movement according to the proper 

forms of oscillation was applied. The nature of the change in the external impact was determined experimentally. 

Distribution of its intensity was estimated by the traces of the crushed particles left on a previously painted 

lateral surface of the crushing chamber. 

Keywords: grain crusher, the Lagrange equations of the 2nd kind, kinetic energy. 

Introduction 

Grain is a valuable source of feed for farm animals. The body of the animal assimilates more 

completely nutrients from crushed grain.  

Crushing grain is widely used for the preparation of feed for the animals on farms and in the 

mixed feed industry. For crushing grain, rotary (hammer) crushers are widely used [1-2]. Such 

crushers have high productivity and provide a wide range of grinding.  

During the research of the operation of rotary grain crushers, the main regularities determining the 

productivity, the degree of crushing, the energy consumption, etc. were revealed.  

However, new technological and technical requirements are imposed to the operation of hammer 

crushers and a process of constant improvement of the structures is underway. Therefore, the 

development of these machines with justified optimal design parameters is an important and urgent 

task.  

The hammers of the crusher are pivotally connected with the rotor, and, because of uneven 

feeding of the grain and the resistance forces, they perform some oscillatory movements relative to the 

point of attachment. Oscillations of the hammers affect the efficiency of the machine. Establishment of 

theoretical patterns of the oscillation process of hammers allows us to determine the optimal ranges of 

parameters and make appropriate corrections in the design already at the design stage.  

A number of research papers [3-4] have been devoted to the study of the oscillations of pivotally 

fixed operating tools of agricultural machines; however, theoretical and experimental studies of the 

grain-hammer interaction that contribute to the improvement of the grain crusher structures are not 

complete and require refinement.  

The aim of this work was a mathematical description of the impact of grain upon the hammer 

rotor and the determination of the influence of the location of the centre of masses of the hammers 

upon the process of their oscillations when deviating from the equilibrium movement.  

Materials and methods 

For the theoretical study of the process of the grain interaction with the hammer of the crusher, we 

will compute a design scheme. In contrast to the forces of inertia and restoring forces, the resistance 

forces have significantly smaller values; therefore, to simplify the design scheme, we assume that the 

damping will be linear and proportional by the form of the proper oscillations. The basis of the 

considered mechanical system (Fig. 1) is the rotor 1 of the crusher with pivotally fixed hammer packs 

2 [5; 6] on it. The rotation from the electric motor is transmitted through the pulleys and elastic  

V-belts 3 to the rotor 1 of the crusher, which, in unperturbed movement, has an angular velocity ω. If 

the rotor deviates from the steady-state rotation according to the law ωt by a small angle φ1, an 

additional pair of forces appears in the V-belts, the moment of which is proportional to the angle φ1, 

but opposite to it by direction. 
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Fig. 1. Scheme of the hammer crusher rotor  

The elastic stiffness of the belts cp can be determined by calculation, depending on the type of the 

belts and the diameter of the pulleys, or experimentally with the electric motor stopped, by applying 

the known moment to the pulley of the crusher rotor and measuring its small deflection angle. The 

packs of hammers are located on the rotor uniformly along the circumference of the radius r. If the 

hammers are located in the pack on a common axis, then, when considering a planar circuit, they can 

be considered as one solid body, pivotally fixed on the rotor. This will reduce the number of degrees 

of freedom of the system. The angle of deviation of the i-th pack of hammers from the radial direction 

is denoted as φi. A non-stationary constraint is imposed on the system, determined by the rotation of 

the electric motor.  

To obtain differential equations of the movement of the system, we use the Lagrange equations of 

the second kind [7]  

 ni
i

Q

i

T

i

T

dt

d
,...1 , ==−















∂ϕ

∂

ϕ∂

∂
&

, (1) 

where  T – kinetic energy of the system;  

 Qi – generalised force, corresponding to the i-th coordinate;  

 φ1 – rotor deviation from the steady-state movement; 

 φ2… φn – deviation of the hammer packs from the radial direction;  

 n – number of degrees of freedom of the mechanical system.  

These equations can be presented in the matrix form  
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where the column vectors correspond to the terms in equation (1).  

The kinetic energy of the system Т is calculated in the inertial frame of reference as the sum of 

the kinetic energies of the bodies entering the system [8; 9]  
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where the first term is the kinetic energy of the rotor with the moment of inertia J1 relative to the 

axis of rotation.  

Each term of the sum determines the kinetic energy of each pack of hammers, calculated in 

accordance with the Koenig’s theorem: 0υ
r

 – speed of the hammer attachment point O on the rotor,  

mi – mass of the i-th hammer pack, Ji – its inertia moment relative to the suspension axis passing 
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through the point O, criυ
r

- relative velocity of the centre of masses of the i-th pack of hammers, 

calculated in the forward moving axes connected with the point O .  

We will express the velocities 0υ
r

and criυ
r

 in terms of generalised coordinates φi and velocities iϕ& , 

while  

 r)(
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where a – distance from the suspension axis to the centre of masses of the hammers.  

The scalar product of these velocities is determined taking into account the angle iϕ between 

them: 

 iicri ar ϕϕϕωϕωυυ cos))(( 110 ⋅++⋅ += &&&
rr

 . (6)  

Let us expand the function cosφi into a Maclaurin series and confine ourselves to the terms of the 

second order of smallness:  
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By substituting expressions (4), (5), (6) into (3), we obtain 
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Let us calculate the derivatives on the left-hand side of the first Lagrange equation of the second 

kind and restrict ourselves to the first-order quantities of smallness in the obtained expressions  
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For all other Lagrange equations (1) ( ni ...2= ), the left-hand side takes the form  
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We will introduce designations for the constant values D , L , K : 

 















=

+=

∑ +++=
=

.

;

;)2(

2

2

2

1

ωarmK

marJL

armrmJJD

i

i

n

i
iii

 (11) 

The Lagrange equation of the second kind in the matrix form (2) can be written in the form:  
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The column vector of the generalised forces {Q} can be presented as the sum of the components  
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 { } [ ]{ } { } { })(tQQBQ уп +−−= ϕ& , (13) 

where [B] – damping matrix,  

 {ϕ& } – column vector of the generalised velocities;  
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– vector-column of the generalised forces from the elastic forces of 

the rotor drive belts;  
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– impact forces upon the system from the side of the 

material to be crushed. 

The dependencies Fi(t) are tabulated according to the experimental data, the forces Fi(t), i = 2…n  

having a periodic nature of the change (Figure 2); they are identical in appearance, but are phase-

shifted, depending on the location of the hammer packs along the circumference of the rotor and the 

material feeding zone [10]. So, for four packets (n = 5), the phase offset is an angle equal to π/2. 

 

Fig. 2. Experimental dependence of the force F(t) on time 

Moving all the terms containing the generalised coordinates and velocities to the left-hand side of 

the equation (12), we obtain  

 [ ]{ } [ ]{ } [ ]{ } { })(tQCBМ =++ ϕϕϕ &&&  , (14) 

where ][B  – damping matrix; 
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– matrix of stiffnesses. 

 With the assumption of proportional damping according to the forms of proper oscillations, this 

matrix is a linear combination of the matrices of masses and stiffnesses  

 [ ] [ ] [ ]CdMaB +=  ,  (15) 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 24.-26.05.2017. 

 

1229 

where a, d – constant proportionality coefficients.  

Besides, the matrix equation (14) can be transformed to the principal coordinates -ui, and the 

equation for each of the principal coordinates can be solved independently [6].  

Let us find the proper (natural) frequencies and forms of oscillations of the system, considering 

the equation of free oscillations  

 { } { } 0][][ =+ ϕϕ CM && . (16) 

A particular solution of this equation has the form  

 { } { } ptА sin=ϕ . (17) 

Substituting it into the equation (10) and equating the coefficients at sinpt, we obtain  

 { } .0]][][[ 2 =+− ACMp  (18) 

We will designate in this equation the so-called characteristic matrix [H] = ,[–p
2
[M]+[C]]. Then 

the equation (11) takes the form [H]{A} = 0. The determinant of the matrix [H], equated to zero, is the 

equation of frequencies: |H| = 0. The roots of this equation pi
2
 are squares of proper (natural) 

frequencies of oscillations of the system. The eigenvectors (proper vectors) of the matrix [C]
-1

[M], 

determined with exactness up to a constant factor, are the proper forms (eigenmodes) of the system 

oscillations. The totality of columns {A}i, united into a square matrix in the order of an increasing 

value of the corresponding frequencies, is a matrix of proper forms (eigenmodes) of oscillations  

 { } { } { } ]...[][ 21 n
АААA = . (19) 

For practical calculations of λi = 1/ pi
2
 and {A}i, there can be applied standard calculation 

subprogrammes of the proper values (eigenvalues) and proper vectors (eigenvectors) of a square 

matrix [C]
-1

[M] in the algorithmic language “Fortran”: NROOT and EIGEN, which are based on the 

Jacobi method and work together.  

After the matrix of the forms is determined, we transform the equation (14), using the 

orthogonality property of the matrix [A]. Let us multiply its both sides by the transposed matrix of 

forms [A]
T
, and each term on the left-hand side by the unit matrix [E] = [A][A]

-1
: 

 [ ] [ ][ ][ ] { } [ ] [ ][ ][ ] { } [ ] [ ][ ][ ] { } [ ] { })(
111

tQАААCАААBАААМА
ТТТТ =++ −−− ϕϕϕ &&& .  (20) 

In this equation we denote: 

1. [ ] [ ] [ ][ ] [ ]\\ Гi

Т

Г mАМАМ ==  – main matrix of masses, which due to the orthogonality of the 

proper forms (eigenmodes) of oscillations, is diagonal, besides: [ ]{ }
iiГi AMAm )(=  ; 

2. [ ] [ ] [ ][ ] [ ]\\ Гi

Т

Г сАСАС ==  – main matrix of stiffnesses, also diagonal, and [ ]{ }iiГi AСAс )(= ; 

3. [ ] [ ] [ ][ ]АBАB
Т

Г =  – main damping matrix; taking into account the proportionality condition, this 

matrix is also diagonal [ ] [ ]\\ ГiГ вВ = , but 
iiiiГi ACAdAMAaв }]{[)(}]{[)( += ; 

4. }{][}{ 1 ϕ−= Au – column vector of the main generalised coordinates iu and the vector column of 

their derivatives: }{][}{ 1 ϕ&& −= Au , }{][}{
1 ϕ&&&& −= Au ; 

5. )}({][)}({ tQAtQ
T

Г = – column vector of the main generalised forces, where 
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i

Q nnii
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i
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++== ; in a tabular presentation of arrays with a definite time 

step, the functions )(tQГi
will also be defined as arrays )(tQi

of discrete values with the same time 

step.  

In accordance with the notation introduced, the system of equations (20) takes the form  

 [ ] )}({}]{[}]{[}{ tQuCuBuМ ГГГГ =++ &&& .  (21) 

The matrix equation (13) splits into separate equations of the form  

 )(tQucuвum ГiiГiiГiiГi =++ &&& . (22) 
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By dividing each of the equations (1.1.14) by Гim  we obtain  
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– coefficient that takes into account the forces of viscous resistance. At a small resistance, it is 

assumed that ni = γipi, where γi – damping coefficient [6] 0 ≤ γi ≤ 0.3. In this case we write the equation 

(23) as  
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The solution of this equation will be determined with the help of the Duhamel integral  
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where 
22

iii nрр −=∗
, 

∗∗
ii CC 21 ,  – arbitrary constants of integration, determined by the initial 

conditions. 

After determining the time series for {u}, let us proceed to the original generalised coordinates  

 { } [ ]{ }uA=ϕ . (26)  

Results and discussion 

According to the above algorithm, programs for the determination of generalised coordinates {φ} 

are compiled using standard subprograms to find the proper (natural) frequencies and forms of the 

system oscillations. As an example, let us consider two variants of the mass distribution of the hammer 

rotor (Table 1) and compare the behaviour of these systems in time. Both rotors had four packs of 

hammers, that is n = 5. 

Table 1 

Initial data for the calculation of the mass distribution of the hammers of the crusher rotor  

Initial data for calculations Values characterizing the distribution of masses  

and stiffnesses of the system  Variant 1 Variant 2 

Radius of the location of the suspension axes on the rotor r, m 0.17 0.17 

Distance from the axis of suspension to the centre of masses of the 

hammer a, m  
39⋅10

-3 
22⋅10

-3 

Distance from the suspension axis to the point of application of the 

resultant external periodic force l, m 
0.060 0.074 

Mass of the pack of hammers mi, kg 1.422 2.430 

Velocity of the hammer end in unperturbed movement, m s 
-1 

 63.4 63.4 

Coefficients in matrices [M] and  [C] of the equation (9):  

D, kg⋅m2
 0.65 0.77 

L, kg⋅m2
 0.0120 0.0127 

Ji, kg⋅m2
 0.0026 0.0039 

cp, N⋅m 4038 4038 

K, N⋅m 721 600 

The first variant differs from the second by the fact that the centre of gravity of the hammer packs 

is displaced from the suspension axis due to the location of additional masses closer to the working 

ends of the hammers. In addition, the mass of the pack of such hammers is less than that in the second 

variant of the hammer of parallelepipedal shape with an equal width of the zone of impact upon the 
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material. As a result of calculations, the following frequency spectra pi were obtained: Variant 1: 78.5; 

526.6; 526.6; 526.6; 651.1 rad·s
-1

; Variant 2: 72.1; 394.8; 394.8; 394.8; 448.0 rad·s
-1

. Only three 

frequency values are different, the others are multiple. With a symmetrical arrangement of the hammer 

packs on the rotor, this regularity is retained also for any other number of the freedom degrees of the 

system at n ≥ 3. If the rotor of the crusher rotates without a load, then the generalized coordinates φi 

are equal to zero φi0 = 0. Figure 3 shows the change in the coordinate φ1 – deviation of the rotor at a 

sudden impact of the material. Figure 4 depicts the changes in the coordinate φ2 per rotor revolution 

with a steady-state movement and periodic impact of the material upon each of the hammer packs. As 

the first line of the matrix of shapes [A] shows, the oscillations of the rotor occur under the impact of 

both the first and second main oscillations, to which the frequencies p1 and pn correspond, where the 

first main oscillation has a more essential value.  

 

Fig. 3. Dependences of the change in the coordinate φ1 after the beginning of the material supply 

on time: 1 – according to the first variant; 2 – according to the second variant  

The movement of the hammers is described by oscillations that are composed of the changes in 

the main coordinates, which have the whole spectrum of proper (natural) frequencies. The decisive is 

the movement of the main coordinate with the second proper (eigen) frequency. Redistribution of the 

mass of hammers from the suspension axis to the ends (Variant 1) entails an increase in the 

components of the matrix of stiffnesses [C] and the values of the natural frequencies. Maximum 

deviation of the hammers per one revolution of the rotor (Fig. 4) from the unperturbed movement of 

the hammers in the first variant is slightly less, as is the recovery time to the zero level.  

In this case, there is also a slight decrease in the amplitude of the oscillations of the generalised 

coordinates and the recovery time for the rotor according to the first variant (Fig. 4).  

 

Fig.4. Dependences of the change in the coordinate φi on time with the steady-state movement of 

the rotor: 1 – according to the first variant; 2 – according to the second variant  

This reduces the value of the energy dissipated during the movement of the system, and, 

consequently, the energy for the drive of the crusher rotor, which is expedient. As it is evident from 

the analysis of the expansion of the movement of the system according to the proper forms of 

oscillations, the decisive values for changing the generalised coordinates are the values of the proper 

(natural) frequencies of oscillations. The frequency of external influences is plotted along the abscissa 

axis. On the ordinate axis –  Ki for = 1, 2, 3, of which: K1 – gain factor for the deviation angle of the 

rotor φ1; K2 – for the deviation angle of the hammer, to which a single periodic impact φ2 is applied; K3 
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– gain factor for the deviation angle of the hammer, to which no such external impacts φ3 are directly 

applied. Analysis of the calculated two variants shows that at a rotational velocity of the rotor  

ν = ω = 260-270 rad·s
-1

 the oscillation amplitudes of all generalised coordinates are smaller for the rotor 

with hammers with displaced masses (Variant 1 Table 1). In order to make a quantitative estimation of 

the deviations of generalised coordinates for specific conditions (structures), it is necessary to carry out 

numerical calculations for the expressions (25, 26). As a result of the analysis of these equations, the 

displacement of the hammer mass to the periphery of the crushing chamber was recommended. 

However, when designing rotor crushers, the mass of hammers cannot be redistributed arbitrarily. It is 

also necessary to have a certain combination of its dimensions and an axis of suspension, ensuring its 

balance to impact.  

Thus, the method described here allows to determine the deviation of the selected generalised 

coordinates of a mechanical system from the steady-state movement and to evaluate the effect of 

structural and technological factors on the maximum values of these deviations.  

Conclusions  

1. The described method allows to determine the deviation of the selected generalised coordinates of 

a mechanical system from the steady-state movement and to assess the impact of the design and 

technological factors on the maximum values of these deviations.  

2. At a rotor speed of ν = ω = 260-270 rad·s
-1

, the oscillation amplitudes of all generalised coordinates 

are smaller for the rotor with hammers with displaced masses. In order to make a quantitative 

estimation of the deviations of generalised coordinates for specific conditions (structures), it is 

necessary to carry out numerical calculations for the obtained expressions.  

3. It is preferred to displace the hammer mass to the periphery of the crushing chamber. However, 

when designing this unit, it should be taken into account that there must be a certain size of the 

hammer and the suspension axis, which ensures its balance to impact.  
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